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The wave drag at zero lift 
of slender delta wings and similar configurations 
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SUMMARY 
Ward’s slender-body theory of supersonic flow is applied to 

bodies terminating in either (i) a single trailing edge at right 
angles to the oncoming supersonic stream, or (ii) two trailing edges 
at right angles to one another as well as to the oncoming stream, 
or (iii) a cylindrical section with two or four identical fins equally 
spaced round it. The wave drag at zero lift, D, is given by the 
expression 

S”(s)S”(z) dsdz - D 
= j)ogm 

1 - 9 f log - S”(z) dz + - 
7T 0 I - x  

where 1 is the length of the body, b the semi-span of the trailing 
edge (or length of trailing edge of a single fin), and S ( x )  is the 
cross-sectional area of the body at a distance z behind.the apex. 
The constant k depends on the distribution of trailing-edge angle 
along the span for each trailing-edge configuration. In case (i) it 
is 1.5 for a uniform distribution of trailing-edge angle and 1.64 for 
an elliptic distribution. In case (ii) it is 1-28 for a uniform distri- 
bution and 1.44 for an elliptic distribution. Study of case (iii) 
indicates that interference effects due to the presence of the body 
reduce the drag of the fins. For example, with a uniform distri- 
bution of trailing-edge angle, k for two fins falls from 1.5 in the 
absence of a body to 1.06 when the body radius equals the trailing- 
edge semi-span, while k for four fins falls from 1.28 to 0.45 under 
the same conditions. 

Where ordinary finite-wing theory is applicable, the present 
method must agree with it for small (M2- l)l/%/Z, and this is 
confirmed by two examples (0  3), but within the limit imposed by 
slenderness the present method is of course more widely applicable, 
as well as simpler, than finite-wing theory. 

It is not known experimentally whether slender-body theory 
gives accurate predictions of drag at zero lift, for the shapes here 
discussed, under the conditions for which on theoretical grounds 
it might be expected to do so. It should be noted that, although 
tests have not yet been made on ideally suitable bodies, no clear 
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indication of the variation with log(M2 - 1) indicated by the 
formula has ever been found. 

1. INTRODUCTION 
Ward’s ‘ slender-body ’ theory (1949) applies to supersonic flow about 

‘ bodies ’ (here understood to include wings and wing-body combinations) 
whose surface is headed by a pointed apex and makes everywhere an angle 
with the undisturbed stream small compared with the Mach angle. Then 
the right-hand side in the linearized equation of motion for +, the disturbance 
potential*, 

(in cylindrical coordinates with the z-axis parallel to the undisturbed 
stream), may be expected to be small near the body compared with the 
left-hand side, provided that the shape of the body varies smoothly with z. 

Accordingly, + may be determined in this region as a solution of 
Laplace’s equation, in a plane perpendicular to the undisturbed stream, 
which satisfies the boundary condition at the body surface. The solution 
that satisfies 

S”(s) ds + O( i) (M2 - l ) l / 2  

2n 2(z - s) 
as r + co must be selected if it is to join smoothly, far from the body, on to 
a solution of (1) which is zero upstream of the Mach cone from the apex. 

This paper is concerned with bodies which terminate in a straight 
trailing edge at right angles to the stream, with a small but finite trailing- 
edge angle (which may vary along it). This class of bodies includes delta 
wings. Bodies terminating in two such trailing edges at right angles to 
one another, or in a cylindrical section with two or four fins attached. are also 
treated. 

Ward and others have used his theory to obtain the lift, moment and 
drag due to lift for such bodies. In this paper their drag at zero lift is 
investigated. The Ward theory is applied without change, so it may be 
asked why a separate paper is necessary. This is partly because Ward has 
suggested that the theory is inapplicable to cross-sections with large 
curvature, and the trailing-edge cross-sections described above have infinite 
curvature at the tips One might hope, however, that this suggestion of 
Ward‘s would be correct only if fluid flows round the region of high curvature 
(leading to specially low pressures there), and that in cases like those con- 
sidered here, where this is not so, the theory can still be alppied. 

Another reason is that many people misinterpret Ward’s theory and 
suggest that it equates drag at zero lift to that of a body of revolution with 
the same distribution S(x)  of cross-sectional area with distance from the 
apex. For the bodies here considered, this ‘ equivalent body of revolution ’ 

*Such that U(z+# is the velocity potential, where U is the velocity of the 
undisturbed stream. 



Wave drag at zero l$t 339 

would have a rounded rear end, which might lead one to suppose the theory 
inapplicable, especially as the formal expression for drag calculated for this 
body shape would be infinite. 

However, Ward’s actual drag formula for a body of length 1 is 
1 z -1 

D S”(s)S”(z) dsdz- 
= z .lo J log 1 ~ 1  

(Ward 1949, equation (37); Ward 1955, equation (9.8.7); here, dv and dT 
are line elements in the plane of a cross-section, normal and tangential to 
it respectively ; the ‘ base pressure ’ term has been omitted). Now, the 
first two terms in (3) are independent of the shapes of cross-sections, but the 
last term, an integral round the rear cross-section, is not. It is because this 
term vanishes in so many cases at zero lift that the theory of the equivalent 
body of revolution has been assumed to be true more generally than it really is. 

This third term is calculated below for bodies terminating in a straight 
trailing edge, leading to the drag formula” 

1 1 1  - - 1 log S”(s)S”(z) dsdz- D 
-p - 2T,o 0 s-zI 

1 
+k}, (4) - y o l o g - S ” ( z ) d x +  I I P ( 1 )  

l)l/2b T 1 - Z  2T 

where 2b is the length of the trailing edge and the constant k is given by the 
equation 

where ~ ( y )  is the trailing-edge angle at a distancey from the middle. For a 
uniform distribution of trailing-edge angle k = 1.5, while for an elliptic 
distribution k = 1.64. 

Equation (4) is directly applicable to delta wings when the parameter 
( M 2 -  1)1/2b/l is small. Experimental work by Love (1949) and others 
indicates that this is perhaps the only region in which any linear theory is 
adequate for predicting the wave drag at zero lift?, although some results 
of Herbert (1951) discussed in $ 3 ,  where a particular wing shape introduced 
by Squire (1951) is considered as an example, are a reminder that it should 
not be applied with M too near unity. 

In $ 4  a similar analysis is applied to other trailing-edge configurations, 
leading always to the same form (4) for the drag with different expressions 
for k. The extent to which a ‘dart’ formed of two slender delta wings 
at right angles (with a common line of symmetry) has a drag approximately 
equal to four times that of each separately, as suggested by the theory of the 

* The replacement of the 27r in the second term in (3) by T in (4) is not a misprint. 
i. Perhaps because outside this region either doubtful assumptions about ‘ leading- 

edge forces ’ have to be made, or else the flow normal to some edge is nearly sonic. 
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equivalent body of revolution, is discussed ; the true slender-body theory 
drag is somewhat less than this. 

An analysis ( 5  4) of bodies terminating in cylindrical sections with 
slender fins having trailing edges at right angles to the stream shows that 
interference effects due to the presence of the body tend to reduce the drag 
of the fins. It had been widely supposed that this would not be true in 
the case of two fins, but the present result, which is subject to the usual 
limitations on accuracy of slender-body theory but can hardly be without 
qualitative validity, indicates that caution is necessary in inferring the drag 
of delta wings from flight tests on cylindrical projectiles which carry them 
in the form of fins. 

2. GENERAL THEORY FOR A STRAIGHT TRAILING EDGE PERPENDICULAR TO THE 

In the plane, at right angles to the stream, which includes the trailing 
edge, we choose Cartesian coordinates (x ,y)  such that the trailing edge is 
x = 0, - b < y < b. 

UNDISTURBED STREAM 

The boundary condition on c j  in this plane is 

} ( - b < Y < b ) ,  ax = { +$.(y) (x = - 0) 
3 -&(y) ( x  = + 0)  

where ~ ( y )  is the trailing edge angle at a distance y from the centre. 
A solution of Laplace's equation in the (x,y) plane satisfying this bound- 
ary condition is obtained by a sink distribution, the sink strength in the 
interval dy being ~ ( y )  dy ; this gives 

(7) c$(x,y) = - \ 4 Y )  z log{x2+(y-Y)2)1~2dY+C,  
-b  

where C is an arbitrary constant. Then as r = (x~"')''' -' CO, 

b 
since evidently S' (Z)  = - 1 e( Y )  d Y ;  and hence, by (Z), 

-b 

Now, Ward's integral, which has to be taken around the boundary of 
the rear cross-section, is 

1 b 
= Cs'(l)+ - jb 1 E(y)E(Y)log(y- YIdydY, 

2n -b  -b 

by (7). 
formula (4), with the expression ( 5 )  for the constant k. 

A combination of equations (3), (9) and (10) gives at once the drag 
This expression 
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fork has the merit that it is independent of b or of the scale of ~ ( y ) ,  depending 
only on the distribution of trailing-edge angle along the span. 

Thus, for a uniform distribution ( ~ ( y )  = constant), 

dydY = = 1.5, 
k = 11' j1 log- 2 

4 -1 -1 IY-YI 
while, for an elliptic distribution, 

= 10g4-1-2 = 1.636. (12) 

3. EXAMPLES : APPLICATION TO DELTA WINGS DESCRIBED BY SQUIRE AND 

Squire (1951) considers a delta wing all of whose cross-sections by 
planes normal to the stream are ellipses. The major semi-axis is bz/Z and 
the minor semi-axis is 272(1- z/Z), where T is the thickness-chord ratio of 
the central section of the wing". Slender-body theory is applicable to 
such wings if ( M 2  - 1)lI2b/Z is small. 

BY PUCKETT 

The cross-sectional area distribution for this wing is 
S(X) = T(bz/l) {2TZ( I - Z/Z)}. (13)  

The trailing-edge angle is equal to 47 at the centre and varies elliptically 
over the length 2b of the trailing edge. Note also that 

Substitution of these values in ( 5 )  gives for the three terms (respectively) 

- -  - 15 m2b2 - 10.rrT2b2 + 2m2b2 { log (M2- 1)lj2b + 1.636}, 
BpU2 

the value of k appropriate to an elliptic distribution of trailing-edge angle 
being inserted. The drag coefficient based on the area lb of the wing 
planform is therefore 

D +O-386) .  (16) 

This agrees with the asymptotic form of Squire's expression for C, for 
very small values of (M2 - l)lI2b/l, but is somewhat smaller for moderate 
values, as figure 1 shows. (Note that the form of Squire's expression 
depends on the precise hypothesis used to get over the notorious 'leading- 
edge force ' difficulty, but that the asymptotic form for small (M2 - l)liab/l 
is independent of this, as no large pressure coefficient at the leading edge 
arises under this condition.) 

all other spanwise positions. 
* This central section is biconvex, but there is a round-nosed aerofoil section at 
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The free-flight measurements of Herbert (195 l), in the range 
(M2-l)1/2b/l < 0.4 

where the slender-body theory can reasonably be applied, are well below 
the theoretical values, but the wing used by him was so far from slender 
(in fact b/E = 1) that the condition mentioned holds only when M < 1.08, 
so that the problem has become a transonic one. It is hoped that a. 
transonic version of slender-body theory may one day be developed*, but 
this has not yet been done. 

’Or \ ( r -  mbd-apan thbcknass/chord ratio. b -  trnlmg-.dgr avni-sp.n. t *chord) 

:t \ 

Figure 1. Drag results for Squire wing. 

As another example, consider a delta wing with a double-wedge aerofoil 
section of uniform thickness-chord ratio T (Puckett 1946). Then the 
cross-sectional area distribution is 

The trailing-edge angle is 27 all along the span, and 

Substitution in (5) gives for the three terms (respectively) 
8r2b2 

= 8z(, - +41og2) - -((2+4log2)+ - 

.+ sTzb.(Iog 7T (M2 - I 1)1/2b +:}. (19) 
* This would require the modification of the second term in (2), to allow for the 

fact that equation (l), on to a solution of which the harmonic function 4 must join 
far from the body. is modified by addition of the ‘ transonic ’ term _ ,  

to its right-hand side. 
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the value of K for a uniform distribution of trailing-edge angle being 
inserted. The drag coefficient is therefore 

I I I I I 1 ,  I I I 

8r2 b 

in agreement with the asymptotic form of Puckett's expression for CD 
for very small values of (Ma - l)14/l. 

inside the curly brackets in (20), and Ward's arguments indicate that this 
will generally be the case. As with the Squire wing, Puckett's expression 

The difference is a term 
O[(Mz - l)ba/12] 

(T - th,ckness/chcrd ratio, b - tratljng-edge somi-span. L -chord ) 

10 

4 6t- \- rired / -  wing t9eory (hcketk 1946) 
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A solution is obtained by a sink distribution as in $2, giving 
- b  

+(x,y) = - ‘0 log{x2 + (y - Y)2}1/2 dY - 
! - b  2n 

- b  *)log{(x-X2)+y2}1/2dX+ C,  (22) 

- .i-, 27r 
with C given by equation (9) as before. Note that now 

b 
S’ (Z)  = -2J’ E(Y)dY. 

-b 

Hence Ward’s integral is 

1 b b  
= CS’(Z)+ - 1 1 E(y)e(Y){logly- YI +log(y2+ Y2)1’2}dydY, (23) 

77 - b J  - b  

where four double integrals have been combined into one by taking the vari- 
ables of integration as y and Y in each. A combination of equations (3), (9) 
and (23) now gives the drag formula (4) with the new expression 

for k.  
not on its magnitude or on b. 
value (5) because on the average (y2+ Y2)li2.exceeds Iy- YI. 

As before, k depends only on the distribution of trailing-edge angle, 
It tends to be slightly less than its previous 

Thus, far a uniform distribution of trailing-edge angle, 

= log 2 + E - = 1.281 (25) 4 

(compare 1.5 in the case of a single trailing edge), while for an elliptic 
distribution 

dyd Y 2 
Iy - Ylyy2 + Y2)1/4 

1 1 1 -1tan-lt 
= l0g4+ - - - + - ___ dt = 1.436 (26) 2 2n 7 r o  i t 

(compare 1.636 in the case of a single trailing edge). 
The fact that k is less than the corresponding value for a single trailing 

edge means that the drag of a pair of delta wings superimposed with their 
apexes and axes of symmetry coinciding, and their planes at right angles to 
one another, is not quite four times that of each separately. For example, 
a ‘dart’ of this kind made of two Squire wings has 

c, = 4 d -  log ’ + 0.186 1, ;{ ( M 2 -  1)’l2b J 
where the drag coefficient is based on the sum of the wing planform areas, 
and the constant is different from that in (16) owing to the different value of 
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k which is appropriate. However, for very slender wings the logarithmic 
term is the most important in (16) and (27), and then the interference 
between the wings almost doubles the drag of each. 

We may consider also bodies which terminate in a cylindrical cross- 
section and a pair, or two pairs at right angles, of fin trailing edges. Let R 
be the radius of the cylindrical cross-section and b the length of each trailing 
edge, and suppose that the trailing-edge angle is ~ ( q )  at a distance q = r - R 
from the cylinder. Then a solution for q5 in the plane, at right angles to 
the stream, which includes the trailing-edges, is obtainable by a sink 
distribution as before, but image sources and sinks in the cylinder have to 
be included as well, giving for the case of two fins placed opposite to one 
another 

[x2 + (r + R + Q}2]1/2[x2 + { y  + R2(R + Q)-1}2]1/2 dQ + c, (28) 
(x2 + y2)1/2 1 + log 

where C is given by equation (9) as before. Hence Ward's integral is 

l b b  
= Cs'(Z)+ - [ 1 €(4)€(&) x 

= - 0  0 

(29) 
A combination of equations ( 3 ) ,  (9) and (29) now gives the drag formula (4) 
with the new expression 

for k. 
edge angle is distributed, as well as on the ratio R/b = a, say. 

This expression depends as before on the way in which the trailing- 

For a uniform distribution of trailing-edge angle, 
1 1  2 ' = !ojolog I(a+q)2-(a+Q)211/2{l -a4(a+q)-2(a+Q)- 2 1 u2 dqdQ, ( 3 1 )  

and this integral is straightforward to evaluate if the logarithm of the curly 
bracket is expanded in series. This gives values of k as a function of 
a = R/b as in table 1 (see also figure 3). It  is seen that the effect of 
interference between fins and body is to decrease the drag of the fins by 
decreasing k. In the limit of very large R/b (which is of more theoretical 
than practical interest) It  becomes 8 -log 2 = 0.807. This may be thought 
surprising on the grounds that the drag of a wing composed of only the 
two fins (the case R/b = 0) ought to be reproduced for very large R/b, when 

F.M. 2 
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each fin, being accompanied by an image in the nearby plane boundary of 
the cylinder, should have half the drag of such a complete wing. However, 
this argument neglects the effect on a fin of the image sources at the centre 
of the cylinder, and of the sinks (and image sinks) representing the other 
fin. I t  is the fact that the latter are twice as distant as the former, though of 
the same strength, which is responsible for the limiting result 

('IHIb = m = (k)It/b = 0 - log 2' 
Comparable behaviour is to be expected for other distributions of 

trailing-edge angle, and the limiting result just quoted is easily seen to be 
quite general. 

Rib 0.0 0.1 0.25 0.5 1.0 1.5 2.0 3.0 
k 1.500 1.391 1.283 1.173 1-057 0.997 0-960 0.918 

- - 

0.398 0.236 
K =+ 0*807+ - - - 

RIb (RlbY 
R/b>3 

Table 1 

Note that the limiting process R/b --f co should be thought of as achieved 
by reducing b for given cylinder radius R and fin length. If instead R is 
increased indefinitely, keeping b and the fin length fixed, the two fins must 
cease to interfere with one another after a time. At the same time, slender- 
body theory will clearly have ceased to be applicable. Thus, there are 
certainly circumstances in which the interference here discussed does not 
take place. However, in the many practical cases when the two fins do 
interfere, the present theory, although only approximate, makes it appear 
likely that interference will at least lower the drag. 

Herbert ( l q ,  in the experiments 
quoted in figure 1, attached his delta wing in the form of two fins to a body 
with R/b = 0.16. This, by table 1, should reduce k by 0.15, and hence 
reduce the drag coefficient C, (for a Squire wing with T = 0.06 and b/l = 1) 
by 2~(0 .06 )~(0 -15)  = 0.0033. This reduction is insufficient to remove the 
discrepancy noted in figure 1 (and there ascribed to transonic flow condi- 
tions), but such a relatively big change for such a moderate value of R/b 
indicates that the effect here discussed is by no means negligible. 

Passing to the case of a body with cruciform fins, we easily obtain by 
similar means the formula 

Consider a numerical example. 

For a uniform distribution of trailing-edge angle this is 
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This expression gives values of k as function where u = R/b as before. 
of Rlb, as in table 2 (see also figure 3). 

Figure 3 .  Values of the constant k in the expression for wave drag at zero lift given 
be slender-body theory, for a body terminating in a cylindrical portion of 
radius R ,  and two or four fins, the length of whose trailing edge is b in each 
case. The trailing-edge angle is taken as uniform. 

Now, the behaviour of k exhibited in table 2 is crucially different from 
that in Table 1, for K decreases indefinitely as Rlb is increased. This was 
to be expected, on the grounds that with four fins conditions for very large 
Rlb become fundamentally different from those for small Rlb. Then, 
quite apart from the remoter interference effects, each fin by virtue of its 
image in the body would have half the drag of a complete wing made up of 
two fins. The total drag would therefore be expected to be about twice 
the drag of such a wing, whereas for R/b = 0 slender-body theory predicts 
(as shown earlier) a drag only slightly less than four times the drag of a 
single wing. 

Rib 0.0 0.1 0.25 0.5 1.0 1.5 2.0 3 *O 
k 1.281 1426 0.955 0.735 0.445 0.250 0.105 -0.105 

R 0.199 0-285 
h Rib (R/b)2 

R/b>3 k +  -ilog-+O.403 + --- 

I 
Table 2 

Hence, the steady decrease of k as Rlb increases, shown in table 2 and 
figure 3, represents as far as slender-body theory is capable -the gradual 
tendency to a state in which the fins cease to interfere with one another and 
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the drag is therefore twice that of a wing made up of two of them. The final 
stages of the process cannot be represented by slender-body theory, but the 
initial trend may well be indicated fairly accurately. 
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